
Lecture-5: Transport Layer

CS118 - Winter 2025

Chapter 3

3.1 Transport-layer
services

3.2 Multiplexing and de-
multiplexing

3.3 Connectionless
transport: UDP

3.4 Reliable data transfer

1

Transport Layer
w Transport protocols:

n Run in end hosts
n Offer a logical communication

channel between 2 application
processes
l e.g. between a browser and a

web server

w Multiple transport protocols
exist, providing different
transport services
n UDP, TCP
n RTP: realtime transport

protocol
n Latest development: QUIC

application
transport
network
data link
physical

application
transport
network
data link
physical

end-to-end transport

CS118 - Winter 2025 2

Transport vs. network layer

w Transport layer: logical
pipe between processes
n relies on network layer to

deliver packets

w Network layer:
delivering packets hop-
by-hop, from a source
host to a destination
host

Household analogy: (from the
textbook)

12 young kids sending letters
to each other

w processes = kids
w hosts = houses
w application messages =

letters in envelopes
w transport protocol = kids

parents
w network-layer protocol =

postal service
(not exactly right, unless we assume the kids
can’t read the envelope)

CS118 - Winter 2025

1 32
end-to-end transport browser Web

server

3

First two transport protocols
w TCP: Reliable, in-order

byte stream delivery
n connection setup & tear

down
n flow control
n congestion control

w UDP: Unreliable
datagram delivery

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

end-end transport

One common function among all transport
protocols: multiplexing/ demultiplexing

CS118 - Winter 2025 4

How Demultiplexing Works
w A host receives an IP

packet
n It carries source and

destination IP addresses
n It carries a single

transport-layer data
segment

n The segment transport
header contains source,
destination port numbers

w Host uses IP addresses &
port numbers to direct
each segment to the
appropriate socket

source port # dest port #

32 bits

application
Data

other transport header fields

TCP/UDP segment format

Transport protool
 header

CS118 - Winter 2025 5

Connectionless Demultiplexing
w When sending a packet to a UDP socket, one

specifies
n destination IP address
n destination port #

w When destination host receives a UDP packet:
n directs the packet to the socket listening to the

destination port# carried in the packet

w Packets with same destination address and
port # are directed to the same socket at the
destination host
n They may have different source IP addresses

and/or source port#s
CS118 - Winter 2025 6

Connectionless transport: return a reply

Client
IP:B

9157
P2

client
 IP: A

P1
5775

P1
6428

P3

server
IP: C

How a server figures out where to return a reply:
UDP specification (RFC768): “UDP module must be able to
determine the source and destination internet addresses and the
protocol field from the internet header. One possible UDP/IP interface
would return the whole internet datagram including all of the internet
header in response to a receive operation”

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: 6428
dest port: 5775

source port: 5775
dest port: 6428

CS118 - Winter 2025 7

Connection-oriented Demultiplex
w A TCP socket is

identified by 4-tuple:
n source IP address
n source port number
n dest. IP address
n dest. port number

w receiving host uses
all the four values to
direct a segment to
appropriate socket

w A server host may
support many
simultaneous TCP
sockets in parallel:
n each socket identified

by its own 4-tuple

w e.g. a web server
creates separate
sockets for each
connected client

CS118 - Winter 2025 8

Connection-oriented demux (cont)

Client
IP:B

P1

client
 IP: A

P1P2P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

A server process can tell apart
u data from different hosts by IP addresses
u Data from the same host but different processes

by source port numbers
CS118 - Winter 2025 9

Multiplexing/demultiplexing

application

transport

network

link

physical

application

transport

network

link

physical

application

transport

network

link

physical

P3 P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at receiver:
gathering data from sockets,
enveloping data with header
(used for demultiplexing later)

Multiplexing at sender:

Each process is identified by IP address and port#

P2 P4

CS118 - Winter 2025 10

Now let’s look at
protocol specifics

UDP: User Datagram Protocol [RFC 768]
w A UDP segment may be

lost, duplicated, or
delivered out of order

w connectionless:
n no prior handshaking

between UDP sender,
receiver

n each UDP segment
handled independently of
others

w UDP usages:
n DNS
n streaming multimedia

apps (loss tolerant, rate
sensitive)

w If application requires
reliable transfer: add
reliability at application
layer

CS118 - Winter 2025 12

UDP header format
👍 simple: performs

demultiplexing only
• no connection state at

sender, receiver

👍 small header size
👎 no delivery reliability

guarantee
👎 no congestion control:

a UDP sender can
blast away as fast as it
wants

source port # dest port #

32 bits

Application
Data

UDP segment format

length checksum

Length, in bytes of UDP
segment, including header

CS118 - Winter 2025 13

UDP checksum

Sender:
w treat segment content as a

sequence of 16-bit integers
n the checksum field set to 0

w checksum: adding up segment
contents (1’s complement
sum)

w Put 1’s complement of the
resulting value into the
checksum field

w UDP checksum is optional:
n if don’t need checksum,

sender sets checksum field
to 0

Receiver:
w Adds up the whole received

UDP segment
n Including the checksum

field
w If the result is all 1’s: no bit

error

Goal: detect bit errors in the transmitted segment

CS118 - Winter 2025

https://en.wikipedia.org/wiki/User_Datagram_Protocol#Checksum_computation
14

https://en.wikipedia.org/wiki/User_Datagram_Protocol

What included in UDP Checksum calculation
w checksum: computed

over
n the pseudo header, and
n UDP header and data.

w pseudo header:
protection against mis-
delivered IP packets
n pseudo header is not

carried in UDP packet,
nor counted in the length
field

CS118 - Winter 2025

source port # dest port #

32 bits

Application
Data

length checksum

UDP segment

source IP address
destination IP address

zero protocol UDP length
1-byte 1-byte 2-byte

15

Reliable Data Transfer

The textbook dived into a detailed
evolutionary explanation to show what
factors are necessary for reliable data

delivery

A simplified version of
the Principles of Reliable Data Transfer

w 3 questions
n How many different types of errors?
n How to detect each type of errors?
n How to recover from each type of errors?

w 3 types of errors, and how to detect them
w Corrupted bits in a packet: detected by checksum
w Packet loss:

w Receiver sends an Acknowledgment for received data
w Sender sets alarm timer: if no ACK before timeout à data lost

w Packets arrived out of order: detected by assigning each
packet a sequence number

w Recovery
w retransmitting the bit-error / lost packet
w Pass to upper layer in-order

CS118 - Winter 2025 17

Three basic components
in reliable data delivery by sender retransmission

w Sender side:
n Assign a sequence # to each piece of data:

uniquely identifies individual packet
n Set a retransmission timer after sending a packet

l If ACK arrives before the timer expires: cancel the timer
l When the timer expires: retransmit the packet

w Receiver side
n After receiving expected data: send an

Acknowledgment (ACK) to the data sender

CS118 - Winter 2025

The devils are always in the details
18

Design-1: Stop-and-Wait
w Sender A sends one data packet,

sets retransmission timer, then
waits for ACK from receiver B
n Each packet is assigned a seq#
n we assume seq# has 1 bit

w When B received a packet with bit
error:
Option-1:
n B does nothing
n A times out and retransmits

CS118 - Winter 2025

A B
P0

A0

P1

tim
eo

ut

P1

A1

A1

P0
Bit error

P0

?

19

Design-2: Stop-and-Wait with NACK
w Sender A sends one data packet,

sets timer, then waits for ACK
from receiver B
n Each packet is assigned a seq#
n we assume seq# has 1 bit

w When B received a packet with
bit error: Option-2:
n B sends an ACK with the seq# of

the last correctly received packet
n A treats the duplicate ACK as

negative-ACK (i.e. B did not get P0):
retransmits P0

CS118 - Winter 2025

A B
P0

A0

P1

tim
eo

ut

P1

A1

A1

P0
Bit error

A1

P0

With NACK, A can retransmit
lost packet sooner compared
to wait-for-timeout

tim
eo

ut

21

Stop-and-Wait in action

CS118 - Winter 2025

first packet bit transmitted, t = 0

sender receiver

last packet bit transmitted, t = L / R

first bit of packet arrives
last bit of packet arrives, send ACK

ACK arrives, send next
packet, t = RTPD + L / R

Link speed: 1 Gbps
Propagation delay: 15 ms
Packet size: 1000 bytes

€

dtrans =
L
R

=
8000bits
109bps

= 8µs

€

Usender =
dtrans

RTT + dtrans
=
0.008ms
30.008ms

= 0.00027

Round-trip
propagation delay

(RTPD)

RTPD

22

Design-3: Pipelining packet transmission
w Allowing multiple, yet-to-be-acknowledged,

packets to be “in-flight”
n Buffer in-flight packets at sender: if some packets

get lost, need to retransmit
n Buffer size determines how many packets can be

in-flight: flow control window

CS118 - Winter 2025 23

Pipelining increases network utilization

CS118 - Winter 2025

first packet bit transmitted, t = 0
sender receiver

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTPD + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

Increase utilization
by a factor of 3!

Usender =
3× L

R
RTT + L

R

=
0.024
30.008

= 0.0008

Round-trip
propagation delay

(RTPD)

RTPD
24

What if some packet(s) get lost?
Go-Back-N (GBN) retransmission
w Sender can send up to N

unacknowledged packets
n N = Flow control window size

w Receiver sends cumulative ack
n acknowledge the last in-order

arrived packet

w Sender sets timer for oldest
unack’ed packet
n when the timer expires,

retransmit all the unack’ed
packets within the window

CS118 - Winter 2025

A B
1
2
3
4

5
6
7
8

timeout5
5
6
7
8

25

Go-Back-N in detail
Sender:
w “window” of up to N consecutive unack’ed packets allowed

CS118 - Winter 2025

Receiver
w When receive a packet with seq= expectedseqnum, send an

ACK
w When receive an out-of-order packet: discard

n No need to buffer, since the sender will send all packets starting from the 1st missed
packet

w Receiver only needs to keep track a single control variable:
expectedseqnum

26

Flow control window at both ends for reliable
data delivery

CS118 - Winter 2025 27

7 8 9 10 11 12 13 14

7 8 9 10 11 12 13 14

sender

receiver

Receiver’s window moves forward upon in-order arrival of
each (error-free) data packet

sender’s window moves forward upon arrival of the ACK for
the first un-ACKed packet

#Go-Back-N in action

send pkt0
send pkt1
send pkt2
send pkt3

sender receiver

rcv pkt0, send ack0
rcv pkt1, send ack1

rcv pkt3, discard,
 (re)send ack1

X loss

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

#Go-Back-N in action

send pkt0
send pkt1
send pkt2
send pkt3

sender receiver

rcv pkt0, send ack0
rcv pkt1, send ack1

rcv pkt3, discard,
 (re)send ack1

X loss

rcv pkt4, discard,
 (re)send ack1ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0,
send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1,
send pkt5

rcv pkt5, discard,
 (re)send ack1

#Go-Back-N in action

send pkt0
send pkt1
send pkt2
send pkt3

sender receiver

rcv pkt0, send ack0
rcv pkt1, send ack1

rcv pkt3, discard,
 (re)send ack1

send pkt2
send pkt3
send pkt4
send pkt5

X loss

pkt 2 timeout

rcv pkt4, discard,
 (re)send ack1
rcv pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0,
send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1,
send pkt5

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

Can we do better than Go-back-N
Selective repeat
w Sender can send up to N unacked packets
w Receiver acknowledges each correctly received

packet
n Receiver buffers packets that arrived out-of-order
n When the missing packets received: Receiver can

deliver data to upper layer
w Sender maintains a timer for the first unack’ed

packet
n When a timer expires, retransmit only that unack’ed

packet
w Flow control window: works as before

n Sender can send N consecutive packets
n N controls the number of packets between

[the first unACKed packet, the last one that can be sent]
CS118 - Winter 2025 31

Selective Repeat: sender, receiver windows

CS118 - Winter 2025 32

Selective Repeat

data from upper layer:
§ if next available seq # in

window, send packet
timeout(n):
§ resend packet n, restart

timer
ACK(n) in
 [sendbase, sendbase+N]:
§ mark packet n as received
§ if n smallest unACKed

packet, advance window
base to next unACKed seq

CS118 - Winter 2025

Sender
packet n in
 [rcvbase, rcvbase+N-1]
§ send ACK(n)
§ out-of-order: buffer
§ in-order: deliver (also deliver

buffered, in-order packets),
advance window to next not-
yet-received packet

packet n in
 [rcvbase-N,rcvbase-1]
§ ACK(n)

otherwise:
§ ignore

33

Receiver

Selective repeat in action

CS118 - Winter 2025

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived
record ack5 arrived

Q1: what happens when ack2 arrives?
34

Selective repeat in action

CS118 - Winter 2025

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived
record ack5 arrived

35

Q: what happens when ack2 arrives?
• If ACK3 arrived: move flow control window to the right by 4 positions

Selective repeat in action

CS118 - Winter 2025

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

Xloss

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

record ack4 arrived
record ack5 arrived

Q2: what if some ACK is lost?
36

Q: what happens when ack2 arrives?
• If ACK3 arrived: move flow control window to the right by 4 positions
• If ACK3 lost: move flow control window to the right by 1

Summary of Selective Repeat
w Receiver informs the sender of received

packets that arrive out of order
n This avoids unnecessary retransmission of already

received packets, when they arrived out of order

w Receiver also ACKs the previous window
n This avoids the sender window freezes

w Improvement: receiver sends cumulative ACK
in addition to Selective Repeat
n No need to wait for timeout, move the sender

window forward ASAP

CS118 - Winter 2025 37

The relationship between
window size & sequence number,

window size & throughput

Relationship between flow control window
size & seq# range

CS118 - Winter 2025

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

sender

receiver

window-size ≤ (Max. seq# + 1) / 2

Example: Window size = 4, is 2-bit seq# enough?

39

Relationship between flow control window
size and throughput: an example

w Flow control window = 3 packets à sender idle
from time to time

w What is the effective throughput (without packet
loss)?

w To keep sender busy all the time: window size = ?
CS118 - Winter 2025

1st packet bit transmitted, t = 0
sender receiver

last bit transmitted, t = L / R

first bit of first packet arrives
last bit of first packet arrives, send ACK

Packet size = 1000 bits
Bandwidth = 1Mbps
Propagation delay = 10msec

Round-trip propagation delay (RTPD)

Sender idle

ACK arrives, send next
packet at t = RTPD + L / R

40

w Window = 3, Round trip propagation delay = 20msec,
 effective throughput = 1Mbps x 3/21

w To achieve full utilization (=sender busy
transmtting all the time): Window = 21 packets
n How many bits would be needed for the seq#

field?

w Generally speaking: in the absence of packet
losses,
n When Window / RTT < bandwidth,

Throughput = window size / RTT
n When Window / RTT ≥ bandwidth,

Throughput = bandwidth

CS118 - Winter 2025 41

