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Chapter 3

3.5 TCP
n Protocol format
n Connection 

management
n Flow control
n Retransmission 

timer



TCP function Overview
w point-to-point: creating a virtual pipe between 2 

processes 
w connection-oriented: set up connection first before data 

transmission, tear down the connection after finish
w bi-directional, reliable byte steam delivery (figure illustrates one 

way only)
n no “message” boundaries

w flow controlled: prevent sender from overwhelming 
receiver

w congestion controlled: mitigating traffic overload inside 
the network
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Socket
Interface

application 
writes data

TCP send buffer

application 
reads data

TCP receive buff

TCP control 
parameters(state)
(TCP Control Block, TCB)
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TCP segment format
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source port # dest. port #

32 bits

sequence number
acknowledgement number

rcvr window size
ptr to urgent datachecksum

FSRPAUheader
length

6 bits 
not
used

Options (variable length)

IP header

application
data 
(variable length)

Seq# of the first 
byte in the payload 

ACK flag: ACK#
 field valid

SYN, FIN, Reset:
connection 

management flags
(Setup, Finish, 

Reset)

source IP address
destination IP address

zero protocol TCP seg. length

TCP pseudo header

Checksum is computed 
over TCP segment plus 
pseudo header

counting the
number of 
bytes 

TCP header has no info 
for congestion control
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TCP’s seq. #s and ACK #s
Lets first assume that a TCP 
connection between A and B is 
already setup:

Seq. #: the seq# of the 
first byte in this 
segment’s data

ACK #: the seq# of next 
byte expected from 
the other end

w TCP uses 
cumulative ACK
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Host A Host B

Seq=42, ACK=79, data

Seq=79, ACK=52, data

Seq=52, ACK=129

Host A
sends 10-
byte data

host ACKs
receipt 
of 50 from B

host B ACKs
receipt of 10-byte 
data from A, and 
sends 50-byte 
data to A

time
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TCP Connection Management
w Set up connection before starting data 

transmission
n Each of the 2 ends reliably informs the other its initial 

data byte sequence number value
w Close connection after finishing data transmission

n Each of the 2 ends reliably informs the other its final 
data byte sequence number value

w Abort connection
n When receiving a RST segment
n When a node may send a RST segment

l receives a TCP segment of unknown connection
l TCP retransmission count hits the upper-bound
l need to reject a new connection request or close an existing 

TCP connection, due to resource limitation
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TCP Connection Setup
Initialize TCP connection variables to get 
ready before sending data
n Initial seq. # used in each direction
n Buffer size (rcvWindow)

3-way handshake in setting up a 
connection
1: client host sends TCP SYN segment to 

server
n SYN flag sets to 1
n specifies client’s initial seq #

l a random number
n does not carry data

2: server receives SYN, replies with ACK and 
SYN control segment
n SYN and ACK flags set to 1

l ACK received seq#
n Specifies its own initial seq #

l also selected randomly

3: client host sends ACK
n ACK flag sets to 1

l ACK received seq#
n May carry data
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client

SYN (#)

server

ACK & SYN (#)

ACK

connect( )

listen( )

connection 
established

connection 
established
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A TCP connection setup example
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s_port: 1030 d_port: 80
seq_no: 10001

ack_no: 0 (not used)
rcv_w: 65535

0checksum: ...
0 0  0 0 1 0

... src 1.1.1.1,  dst: 2.2.2.2

SYN

s_port: 1030 d_port: 80
seq_no: 10002

ack_no: 30011
rcv_w: 65535

checksum: ...
0 1 0 0 0 0

... src 1.1.1.1,  dst: 2.2.2.2

ACK

Address: 1.1.1.1

Address: 2.2.2.2

IP header

s_port: 80 d_port: 1030
seq_no: 30010
ack_no: 10002

rcv_window: 2000

0checksum: ...
0 1 0 0 1 0header

length
not
used

... src 2.2.2.2,  dst: 1.1.1.1

SYN & ACK

may carry app data
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TCP Connection Close
Either end can initiate the close of its end 
of the connection at any time

1: A sends TCP FIN control 
segment to the other
n FIN flag sets to 1
n This segment must not carry data

2: the other end (B) receives FIN 
segment, replies with ACK
n regular ACK, ACK A’s FIN

3: later when B finishes sending all 
its data and ready to close, it 
sends FIN segment

4: A receives FIN, replies with ACK. 
5: B receives FIN-ACK, closes 

connection
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client

FIN

server

ACK

ACK

close( )

connection 
closed

FIN
close( )

?

A B

what should A do after sending FIN-ACK?
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TCP Connection Close
Either end can initiate the close of its end of the 
connection at any time

1: A sends TCP FIN control segment to 
the other
n FIN flag sets to 1
n This segment must not carry data

2: the other end (B) receives FIN segment, 
replies with ACK
n regular ACK, ACK A’s FIN

3: later when B finishes sending all its data 
and ready to close, it sends FIN 
segment

4: A receives FIN, replies with ACK. 
5: B receives FIN-ACK, closes connection
6:  A closes the connection after waiting 

for “long enough” time w/o receiving 
retransmitted FIN
n Long enough = 2 x Max. Seg. Lifetime

Max. Seg. Lifetime = 2 minutes
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client

FIN

server

ACK

ACK

close( )

connection 
closed

FIN
close( )

A B
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w Upon a TCP connection setup request: the system sets 
up a TCP Control Block (TCB)
n Identified by: source+dest. addresses, source+dest. ports
n Connection state includes info such as

l Receiver flow control window size
l Seq# of data

 oldest sent but unacked 
 Latest sent, unacked

l segments that arrived out of order
l etc

w If TCP receives a segment (other than SYN) it cannot 
find corresponding TCB: reply with RST
n Receiver of RST aborts the connection, all data on the 

connection considered lost
This can happen

n Due to bit errors
n By attacks: 

When to send “connection reset”
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An HTTP 1.0 connection example
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source port # dest port #

32 bits

sequence number
acknowledgement number

rcvr window size
checksum

FSRA

IP header

Application data 
(variable length)

client

Open conn. S, seq=34 

accept conn

A, ack=35; S, seq=93

A, ack=94; seq=35, data 

Send 20 
bytes of 
request

A, ack=55; seq=94, data Send 100 
bytes
Response, 
then close the 
conn.A, ack=55; F, seq=194

A, ack=195; F, seq=55

A, ack=56
Connection 
closed, wait 
2MSL

conn. closed, 
remove TCB

important
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TCP segment format: the remaining parts
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source port # dest port #

32 bits

sequence number
acknowledgement number

rcvr window size
ptr to urgent data

Options (variable length, up to 40byte)

IP header

application
data 
(variable length)

4-bit header length
(data offset: where 
payload data starts

U

checksum
FSRPAData 

offset
not
used

6 unused bits

6 flag bits
U: urgent
A: ACK
P: push
R: reset
S: SYN
F: FIN

N
o 

lo
ng

er
 u

se
d
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AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 305

Sender’s output buffer Receiver’s input buffer

8 free spaces (rwnd)

5 new data packets (wnd)

rwnd=3

wnd=3

rwnd=1

Receiver processed packet and slot
in the input buffer become available

Fig. 2. Receiver’s window concept: receiver reports a size of the available
input buffer (receiver’s window, rwnd) and sender sends a portion (window,
wnd) of data packets that does not exceed rwnd

throughput of a TCP flow depends directly on the sliding
window size and inversely on the round-trip time of the
network path.) On the other hand, if the sliding window is
too large, there is a high probability of packet loss because
the network and the receiver have resource limitations. Thus,
minimization of packet losses requires minimizing the sliding
window. Therefore, the problem is finding an optimal value
for the sliding window (which is usually referred to as the
congestion window) that provides good throughput, yet does
not overwhelm the network and the receiver.
Additionally, TCP should be able to recover from packet

losses in a timely fashion. This means that the shorter the
interval between packet transmission and loss detection, the
faster TCP can recover. However, this interval cannot be too
short, or otherwise the sender may detect a loss prematurely
and retransmit the corresponding packet unnecessarily. This
overreaction simply wastes network resources and may induce
high congestion in the network. In other words, when and how
a sender detects packet losses is another hard problem for TCP.
The initial TCP specification [1] is designed to guard only

against overflowing the input buffers at the receiver end. The
incorporated mechanism is based on the receiver’s window
concept, which is essentially a way for the receiver to share the
information about the available input buffer with the sender.
Figure 2 illustrates this concept in schematic fashion. When
establishing a connection, the receiver informs the sender
about the available buffer size for incoming packets (in the
example shown, the receiver’s window reported initially is
8). The sender transmits a portion (window) of prepared data
packets. This portion must not exceed the receiver’s window
and may be smaller if the sender is not willing (or ready)
to send a larger portion. In the case where the receiver is
unable to process data as fast as the sender generates it, the
receiver reports decreasing values of the window (3 and 1 in
the example). This induces the sender to shrink the sliding
window. As a result, the whole transmission will eventually
synchronize with the receiver’s processing rate.
Unfortunately, protocol standards that remain unaware of

the network resources have created various unexpected ef-
fects on the Internet, including the appearance of congestion
collapse (see Section II). The problem of congestion control,

meaning intelligent (i.e., network resource-aware) and yet ef-
fective use of resources available in packet-switched networks,
is not a trivial problem, but the efficient solution to it is
highly desirable. As a result, congestion control is one of the
extensively studied areas in the Internet research conducted
over the last 20 years, and a number of proposals aimed at
improving various aspects of the congestion-responsive data
flows is very large. Several groups of these proposals have
been studied by Hanbali et al. [4] (congestion control in
ad hoc networks), Lochert et al. [2] (congestion control for
mobile ad hoc networks), Widmer et al. [5] (congestion control
for non-TCP protocols), Balakrishnan et al. [6] (congestion
control for wireless networks), Leung at al. [7] (congestion
control for networks with high levels of packet reordering),
Low et al. [8] (current up to 2002 TCP variants and their
analytical models), Hasegawa and Murata [9] (fairness issues
in congestion control), and others researchers. Unlike previous
studies, in this survey we tried to collect, classify, and analyze
major congestion control algorithms that optimize various pa-
rameters of TCP data transfer without relying on any explicit
notifications from the network. In other words, they preserve
the host-to-host principle of TCP, whereby the network is seen
as a black box.
Section II is devoted to congestion control proposals that

build a foundation for all currently known host-to-host al-
gorithms. This foundation includes 1) the basic principle
of probing the available network resources, 2) loss-based
and delay-based techniques to estimate the congestion state
in the network, and 3) techniques to detect packet losses
quickly. However, the techniques that are developed are not
universal. For example, Tahoe’s initial assumption that pack-
ets are not generally reordered during transmission may be
wrong in some environments. As a result, the performance
of Tahoe flows in these environments will prove inadequate
(Section II-A). In Section III we discuss congestion control
proposals that modify previously developed algorithms to
tolerate various levels of packet reordering.
As data transfer technologies and the Internet itself have

evolved, the research focus for congestion control algorithms
has been changing from basic congestion to more sophisticated
problems. In Section IV we review the network resource
optimization problem. In particular, we discuss two algorithms
which discover the ability of a TCP congestion control to
provide traffic prioritization in a pure host-to-host fashion.
In Section V we discuss congestion control algorithm

proposals which try to improve the performance of TCP
flows running in wireless networks, where it is common to
have high packet losses (e.g., random losses due to wireless
interference).
In Section VI we review several proposed solutions that

have attracted the most research interest over the recent past.
These proposals aim to solve the problem of poor utilization of
high-speed and long-delay network channels by standard TCP
flows. They introduce several direct and indirect approaches
to more aggressive network probing. The indirect approaches
combine various loss-based and delay-based ideas to create
congestion control approaches that try to be aggressive enough
when there are enough network resources, yet remain gentle
when all resources are utilized.

TCP Flow Control

15

Flow control: Prevent sender from overrunning receiver by 
transmitting too much data too fast

receiver: informs sender of amount of free buffer space
n Carried in RcvWindow field of TCP header of every arriving segment, 

can change dynamically

sender: keeps the amount of transmitted, unACKed data no more 
than most recently received RcvWindow value
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TCP loss detection and recovery
w TCP sets a retransmission timer (RTO) to detect 

packet losses
w A TCP connections sets one retransmission timer 

on the earliest sent, but unACKed segment S
n If S gets ACKed, restart the timer on next unACKed 

segment
n (reset timer when receiving ACK for new data)

w When the timer expires, retransmit starting from S
w How many segments to retransmit?

n Receiver flow control window, rwnd
n Congestion control window, cwnd (next lecture)
n the number of segments that can be retransmitted: 
min[cwnd, rwnd]
l Dependent on how segment loss is detected, see next lecture
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Setting TCP Retransmission Timer
w TCP sets retrains. timer (RTO) based on 

estimated RTT
n plus a “safety margin” (DevRTT)

w SRTT: estimated “smoothed” RTT
n 𝑆𝑅𝑇𝑇 = 1 − 𝛼 ( 𝑆𝑅𝑇𝑇 + 𝛼 ( 𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑇𝑇
n Exception: for the first measurement, 
𝑆𝑅𝑇𝑇 = 𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑇𝑇

w DevRTT: estimated RTT deviation
n 𝐷𝑒𝑣𝑅𝑇𝑇 = 1 − 𝛽 ( 𝐷𝑒𝑣𝑅𝑇𝑇 + 𝛽 (
|𝑆𝑅𝑇𝑇 − 𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑇𝑇|

n Exception: for the first measurement: 
𝐷𝑒𝑣𝑅𝑇𝑇 = !"##

$

w RTO: Retransmission timeout
n 𝑅𝑇𝑂 = 𝑆𝑅𝑇𝑇 + 4 ( 𝐷𝑒𝑣𝑅𝑇𝑇

w Typical parameters:
n 𝛼 = %

&
 ,   𝛽 = %

'
	 ,   RTO()(*(+, = 1	𝑠𝑒𝑐
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Data-1

ACK-1

retrans. 1

Data-3
SampleRTT

ACK-3

retrans. 2

Data-2

Timeout 
too early

Timeout 
too late

A B

important
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No need to remember details 
Just understand the basic idea

w Network delay: random
w How to set retransmission timer: 

n Take measurements
n Set the timer based on both average, and the 

variation

w Start the ball rolling: how to set the 
retransmission timer for the first packet of a 
connection?
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One more question
How to set the RTO value for the first segment?
Set a default value by some engineered guessing
wwhat if the guessed value too small?

n Unnecessary retransmissions
wwhat if the guessed value too large?

n In case of first, or first few, packets being lost, wait 
longer than necessary before retransmission

wCurrent practice:
n initial RTO = 1 sec (see RFC6298)
n Once get the first sample RTT: SRTT¬sample RTT, 

DevRTT =SRTT/2
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w Taking measurement seems 
infeasible 
n take the delay between first 

transmission and final ACK?
n take the delay between last 

retransmission of segment(n) and 
ACK(n)?

w Don’t measure?
n Original path failed
n New path is much longer
n Without taking measurement, RTO 

got stuck with being too short

What to do in cases of retransmissions

20

tim
eo

ut

S
D

tim
eo

ut
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Karn’s algorithm
in case of segment retransmission:
w do not take the RTT sample (i.e. no update to 

SRTT or DevRTT)
w double the retransmission timeout value (RTO) 

after each timeout
w Take RTT measure again upon next successful 

data transmission (receiving ACK without 
retransmission)
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Computing RTO: an example
difference = SampleRTT – SRTT
SRTT = SRTT + 1/8 x difference
DevRTT = DevRTT +
     1/4 (|difference| - DevRTT)
RTO = SRTT + 4 x DevRTT

22

client

A, ack=55; F, seq=194

A, ack=195; F, seq=55

A, ack=56 Connectio
n closed, 
wait 2MSL

conn. Closed, 
remove TCB

Initialize: RTO = 1 second

Open conn. S, seq=34 

accept conn

A, ack=35; S, seq=93400ms

A, ack=94; seq=35, data 

Send 20 
bytes of 
request

A, ack=55; seq=94, data Send 100B
Response, 
then close 
the conn.

480ms

Upon receiving second packet:
  diff = 480 – 400 = 80 
  SRTT = 400 + 10 = 410
  DevRTT =  200 + ¼ (80-200) = 170

Upon receiving first packet:
   SRTT = sample RTT
   DevRTT = sample RTT / 2
   SRTT = 400, DevRTT =  200

(from the earlier HTTP 1.0 connection example) 
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Example RTT estimation:
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RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100
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time (seconnds)
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T
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n

d
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SampleRTT Estimated RTT
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TCP Fast  Retransmit
w RTO is set to a relatively long value

n Aim at minimizing superfluous retransmission
n long delay before resending lost packet

w Can detect lost segments via duplicate ACKs.
n When a segment is lost, next arrival at receiver is out of 

order
n When a segment arrives out of order, receiver can 

immediately sends an ACK indicating seq. # of next 
byte it is expecting

w When sender receives 3 duplicate ACKs for the 
same seq#(n), it assumes the segment with 
seq#(n) was lost

àfast retransmit: start retransmitting without 
waiting for the timer to expire
n How many segments to retransmit? One only
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TCP fast retransmit example

25

Host A

Seq=92, 500 bytes data

With fast retransmit

Host B

Seq=592, 500B data

X

Seq=592, 500B data
Seq=1092, 500B dataSeq=1592, 500B data
Seq=2092, 500B data

ACK592

ACK592

ACK592ti
m

eo
ut

ACK592

Host A

Seq=92, 500 bytes data

Without fast Retransmit

Host B

Seq=592, 500B data

X

Seq=592, 500B data
Seq=1092, 500B dataSeq=1592, 500B data
Seq=2092, 500B data

ACK592

ACK592

ACK592

ti
m

eo
ut

ACK592

improvement
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Yet another tweak of TCP: delayed ACK
w If a TCP connection carries traffic in both 

directions: ACKs are piggybacked on data 
segments

w For one-way data flow: If receiver sends an ACK 
after receiving everyone segment à double the 
packet count across the Internet

w Delayed ACK: after connection setup, upon 
receive one data segment S1 :
n wait a bit, see if next segment S2 will arrive soon
n If yes: sends an ACK for both
n If no: send an ACK for S1

Does this delayed-ACK screw up RTT measurement?  Maybe a little

26

FYI
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TCP Receiver: when to send ACK?

27

Event at TCP receiver    TCP Receiver action

in-order segment arrival, no gaps,
everything earlier already ACKed

delayed ACK: wait up to 500ms,
If nothing arrived, send ACK

in-order segment arrival, no gaps,
one delayed ACK pending

immediately send one 
cumulative ACK 

out-of-order arrival: higher-than-
expect seq. #, gap detected

Immediately send ACK, 
indicating seq. # of next expected 
byte

arrival of segment that partially or 
completely fills a gap

immediate send ACK if segment 
starts at the lower end of the gap
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Summary
w Connection management (SYN, FIN)
w Flow control for reliable delivery (sequence numbers, 

ACK)
n ACK is a flag in the header; ACK flag == 0, ACK number in 

the header makes no sense (value ignored)
w Two-way communication

n Separate sequence number management for both 
directions

w Error detection and recovery
n Retransmission timer
n Fast retransmit

w Receiver’s flow control
n Avoid overwhelming the receiver

w Congestion control
n Avoid overwhelming the network
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After obtain a new RTT sample:
w difference = SampleRTT - SRTT 
w SRTT’ = (1-a) x SRTT + a x SampleRTT
               = SRTT + a x difference
w DevRTT’ = (1-b) x DevRTT + b x |difference|
             = DevRTT + b (|difference| - DevRTT)

w Retransmission Timer (RTO) = SRTT + 4 x DevRTT

Typically: a = 1/8, b = 1/4

CS118 - Winter 
2025
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important
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