
Lecture 7: Congestion Control

CS118 - Winter 2025 1

Chapter 3

3.6 Principles of
congestion control

3.7 TCP congestion
control

How network congestion happens

CS118 - Winter 2025 2

too many sources
sending data too fast
into the network at
the same time

Scenario 1
u 2 senders, 2 receivers
u one router with infinite buffer
u no retransmission

When congested:
u Achieve maximum possible

throughput
u long delays, unbounded

unlimited shared
output link buffers

Host A

lin : original data

Host B

lout

Congestion: scenario 2

CS118 - Winter 2025 3

one router, finite
buffer
senders retransmit
when timeout

R/2

R/2
lin

l o
ut

w Packets may get dropped at
router due to buffer full

w Known loss case: sender only
retransmits if a packet is known
to be lost

w Duplicates: sender may time out
prematurely and retransmit,
some duplicates are delivered

R/2

R/2
lin

l o
ut

Congestion Collapse

CS118 - Winter 2025 4

306 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

Offered load

E
ffe

ct
iv

e
lo

a
d

Capacity

Fig. 3. Effective TCP load versus offered load from TCP senders

Router

75% of packets rejected on both
input and output paths

400%A B
400%

Fig. 4. Congestion collapse rationale. 75% of data packets dropped on
forward path and 75% of ACKs dropped on reverse: only 6.25% of packets
are acknowledged

Finally, we present opportunities for the future research in
Section VII and conclude our survey in Section VIII.

II. CONGESTION COLLAPSE
The initial TCP standard has a serious drawback: it lacks

any means to adjust the transmission rate to the state of
the network. When there are many users and user demands
for shared network resources, the aggregate rate of all TCP
senders sharing the same network can easily exceed (and
in practice do exceed) the capacity of the network. It is
commonly known in the flow-control world that if the offered
load in an uncontrolled distributed sharing system (e.g., road
traffic) exceeds the total system capacity, the effective load
will go to zero (collapses) as load increases [10] (Figure 3).
With regard to TCP, the origins of this effect, known as

a congestion collapse [11]–[13], can be illustrated using a
simple example. Let us consider a router placed somewhere
between networks A and B which generate excessive amounts
of TCP traffic (Figure 4). Clearly, if the path from A to B is
congested by 400% (4 times more than the router can deliver),
at least 75% of all packets from network A will be dropped
and at most 25% of data packets may result in ACKs. If the
reverse path from B to A is also congested (also by 400%,
for example), the chance that ACK packets get through is
also 25%. In other words, only 25% of 25% (i.e., 6.25%)
of the data packets sent from A to B will be acknowledged
successfully. If we assume that each data packet requires its
own acknowledgement (not a requirement for TCP, but serves
to illustrate the point), then a 75% loss in each direction
causes a 93.75% drop in throughput (goodput) of the TCP-
like flow. Implementing cumulative ACKs help shift the bend
of the curve in Figure 3, but cumulative ACK are not able to
eliminate the sharp downward bend.
To resolve the congestion collapse problem, a number of

solutions have been proposed. All of them share the same

RFC 793

Tahoe

Reno

DUAL

VegasFACK NewReno

Vegas+

Veno

Vegas A

Proactive
(delay-based)

Reactive
(loss-based)

Fig. 5. Evolutionary graph of TCP variants that solve the congestion collapse
problem

idea, namely of introducing a network-aware rate limiting
mechanism alongside the receiver-driven flow control. For
this purpose the congestion window concept was introduced:
a TCP sender’s estimate of the number of data packets the
network can accept for delivery without becoming congested.
In the special case where the flow control limit (the so-
called receiver window) is less than the congestion control
limit (i.e., the congestion window), the former is considered
a real bound for outstanding data packets. Although this is a
formal definition of the real TCP rate bound, we will only
consider the congestion window as a rate limiting factor,
assuming that in most cases the processing rate of end-hosts
is several orders of magnitude higher than the data transfer
rate that the network can potentially offer. Additionally, we
will compare different algorithms, focusing on the congestion
window dynamics as a measure of the particular congestion
control algorithm effectiveness.
In the next section we will discuss basic congestion control

algorithms that have been proposed to extend the TCP spec-
ification. As we shall see, these algorithms not only preserve
the idea of treating the network as a black box but also
provide a good precision level to detect congestion and prevent
collapse. Table I gives a summary of features of the various
algorithms. Additionally, Figure 5 shows the evolutionary
graph of these algorithms. However, solving the congestion
problem introduces new problems that lead to network channel
underutilization. Here we focus primarily on the congestion
problem itself and basic approaches to improve data transfer
effectiveness. In the following sections other problems and
solutions will be discussed.

A. TCP Tahoe
One of the earliest host-to-host solutions to solve the con-

gestion problem in TCP flows has been proposed by Jacobson
[14]. The solution is based on the original TCP specification
(RFC 793 [1]) and includes a number of algorithms that can be
divided into three groups. The first group tackles the problem
of an erroneous retransmission timeout estimate (RTO). If
this value is overestimated, the TCP packet loss detection

123234

Ri: retransmitted packets

Host A

Host B
111R1R1R2R2

ideal effective load (fully utilize resource)

actual curve (the heavier the
congestion, the more
retransmissions)

earlier packets
queued up

w Add a congestion control window (cwnd)on top of
the flow-control window
n Sender limits: LastByteSent-LastByteAcked ≤ cwnd

w How to adjust cwnd size based on network traffic
load?
n Infer network congestion by observed packet losses

TCP Congestion Control

CS118 - Winter 2025 5

Congwin
recvwin

Congestion Control (CC) Window Adjustment

w Two phases:
n slow start: set CC window (cwnd) size to 1 segment

l Start slow but rapidly increase CC window size
n congestion avoidance

l Slowly but continuously increase CC window size

w Use Slow-Start Threshold (ssthresh) to define
the boundary between these two phases
n When cwnd < ssthresh: in slow-start phase,

increase cwnd quickly
n When cwnd ≧ ssthresh: in congestion avoidance

phase, increase cwnd by one segment per RTT
CS118 - Winter 2025 6

TCP Slow Start
Objective: gauge the pipeline size quickly
1. Set cwnd = 1 MSS (max. segment size, in bytes)

n i.e. cwnd = 1 segment worth of bytes
2. Send cwnd-allowed segments
3. If receive an ack

n cwnd = cwnd + 1 segment
l more segment can be sent now

4. If timeout
n ssthresh = cwnd / 2
n cwnd = 1 MSS
n goto step 2

CS118 - Winter 2025 7

Multiplicative Increase per RTT

cwnd have gone too far

one segment

RT
T

two segments

four segments

which moves the
cumulative ACK
forward

(Assuming no delayed-ACK)

reset cwnd to 1 segment

308 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

Receiver limit (window)

M
ax

 #
 o

f o
ut

st
an

di
ng

pa

ck
et

s

TimeTransmission
start up

Maximum data transfer
(same for similar graphs

throughout paper)

Fig. 6. Outstanding data packets allowance dynamics as defined in RFC793
(network limits are not considered)

C
on

ge
st

io
n

w
in

do
w

Time

Receiver limit

C
on

ge
st

io
n

w
in

do
w

Time

Receiver limit

Network limit

 Detected packet loss

Network limit

Fig. 7. Congestion window dynamics and effectiveness of Slow-Start if limit
is imposed by legacy flow control (left) and network (right)

exponential function on an RTT-defined scale (Figure 7). The
word “slow” in the algorithm name makes reference to this
difference. If a packet loss is detected (i.e., the network is ex-
periencing congestion because all network resources have been
utilized), the congestion window is reset to the initial value
(e.g., one) to ensure release of network resources. Graphs on
Figure 7 show two cases of the congestion window dynamics:
the left graph represents the case when the receiver cannot
process at the receiving rate (i.e., the original assumption
of TCP), and the right graph shows the congestion window
dynamics when the network cannot deliver everything at the
transmitted rate.
We can define algorithm effectiveness as the ratio of the area

below the congestion window graph (e.g., Figure 7, hatched
area) to the area below the limit line (Figure 7, under “Network
limit” line). It is clear (observing the right graph in Figure 7)
that where the available network resources are lower than
limits imposed by the receiver, the effectiveness, in the long
term, of the Slow Start algorithm is very low.
The other algorithm of the third group is Congestion

Avoidance. It is aimed at improving TCP effectiveness in
networks with limited resources, i.e., where the network is
a real transmission bottleneck. In comparison to the Slow
Start, this algorithm is much more conservative in response
to received ACK packets and to detection of packet losses.
As opposed to doubling, the congestion window increases by
one only if all data packets have been successfully delivered
during the last RTT (additive increase policy). And in contrast
to restarting at one after a loss, the congestion window is
merely halved (multiplicative decrease policy). Jacobson’s
analysis [14] has shown that to achieve network decongestion,

Network limit

C
on

ge
st

io
n

w
in

do
w

Time

Loss detection

Fig. 8. Congestion window dynamics and effectiveness of Congestion
Avoidance

C
on

ge
st

io
n

w
in

do
w

Time

ssthresh

SS CASS SS

Loss detection

Network limit

Fig. 9. Congestion window dynamics of combined Slow-Start (SS) Conges-
tion Avoidance (CA)

exponentially reducing network resource utilization by each
individual flow is sufficient. The multiplicative decrease policy
mimics such exponential behavior when several packets in
succession are determined as lost (e.g., during the persistent
congestion state). As can be seen in Figure 8, the Congestion
Avoidance algorithm is quite effective in the long term. The
tradeoff is a slow discovery of available network resources
due to the conservative rate of the additive phase.
The implementation of TCP Tahoe includes both Slow

Start and Congestion Avoidance algorithms as distinct opera-
tional phases. This combines fast network resource discovery
and long-term efficiency. For phase-switching purposes, a
threshold parameter (ssthresh) is introduced. This threshold
determines the maximum size of the congestion window in
the Slow Start phase, and any detected packet loss adjusts
the threshold to half of the current congestion window. The
congestion window itself, as in the Slow Start algorithm, is
always reset to a minimum value upon loss detection. As
long as the value of the congestion window is lower than the
threshold parameter, the Slow Start phase is used. Once the
window is greater than the threshold, Congestion Avoidance is
used. This is known as the Slow Start-Congestion Avoidance
phase cycle (Figure 9).
Effectiveness is not the only important parameter of con-

gestion control algorithms. Due to the resource-sharing nature
of IP networks, TCP algorithms should enforce fair resource
sharing. Chiu and Jain [29] developed a fairness measure F
(the so-called Jain’s fairness index) as a function of network
resources consumed by each user sharing the same path:

F =

(
n∑

i

fi)2

n ·
n∑

i

f2
i

where n is the number of users sharing the path and fi is the

Slow Start with Congestion Avoidance
w Set cwnd = 1 packet, and initialize ssthresh

n default: initialize ssthresh to the flow control window size
w When cwnd < ssthresh: in Slow Start phase
w when cwnd ≥ ssthresh: in Congestion Avoidance phase

n increase cwnd by one packet per round-trip time

CS118 - Winter 2025 8

No need to go back to
Slow-Start upon packet
loss (unless timeout);
reduce cwnd to half
instead

1

2

Congestion Avoidance:
Additive Increase, Multiplicative Decrease (AIMD)

Objective: cautiously probe for
unused resources, quickly
recover from overshoot
w Send cwnd-allowed segments

n If all sent segments in the last
RTT time period get ACKed
l cwnd = cwnd + 1 segment

n Else if 3 dup-ACKs
l cwnd = cwnd / 2

n Else if timeout
l cwnd = 1 segment

C
on

ge
st

io
n

w
in

do
w

Time

Receiver limit

C
on

ge
st

io
n

w
in

do
w

Time

Receiver limit

Network limit

Network limit

C
on

ge
st

io
n

w
in

do
w

Time

C
on

ge
st

io
n

w
in

do
w

Time

ssthresh

 Detected packet loss

Network Share (flow1)

Equ
al

(fa
ir)

 sh
ar

e

N
et

w
or

k
S

ha
re

 (f
lo

w
2)

Network Limit

Network Share (flow1)

Equ
al

(fa
ir)

 sh
ar

e

N
et

w
or

k
S

ha
re

 (f
lo

w
2)

Network Limit

Packet
losses

Packet
losses

x0 x0

x1

x3

x2

x1

x2

xn

xn+1

SS CASS SS

Loss detection

Network limit

Receiver limit (window)

M
ax

 #
 o

f o
ut

st
an

di
ng

pa

ck
et

s

TimeTransmission
start up

Loss detection

Network limit

Maximum data transfer
(same for similar graphs

throughout paper)

Without moving cwnd back to single segment

1

2
CS118 - Winter 2025 9

TCP Fast Retransmit
w RTO set to a relatively long value

n Detect loss by timeout à long delay before retransmit
w Detect packet loss by duplicate ACKs

n When a segment is lost, next arrival at receiver is out of
order

n Receiver sends an ack with the seq# of the last in-order
arrival (cumulative ACK)

w When sender receives 3 duplicate ACKs carrying #n:
assumes the segment of seq#(n) is lost
n Why 3 dup-ACKs: avoid false alarm due to out-of-order

packet delivery
àfast retransmit: resend the segment without waiting for

timeout
l Resending one segment only; also restart the retransmission timer

CS118 - Winter 2025 10

From the TCP lecture:

Congestion Avoidance
Objective: in steady state, the sender gently
probe for unused resources
w Send cwnd packets
w If receives an ack

n cwnd(i) = cwnd(i-1) + (#bytes in 1 segment)/cwnd(i-1)

w If detect loss by 3 duplicate ACKs: packets
continue to arrived at receiver à network not
badly jammed
n cwnd = ssthresh = cwnd / 2

Additive Increase, Multiplicative Decrease (AIMD)
CS118 - Winter 2025 11

1

2

Host A

Seq=92, 500 bytes data

Fast RXT scenario

Host B

Seq=592, 500B data

X

Seq=592, 500B data
Seq=1092, 500B dataSeq=1592, 500B data
Seq=2092, 500B data

ACK592

ACK592

ACK592
ACK592

TCP fast retransmit example

CS118 - Winter 2025 12

Host A

Seq=92, 500 bytes data

Without Fast RXT

Host B

Seq=592, 500B data

X

Seq=592, 500B data
Seq=1092, 500B dataSeq=1592, 500B data
Seq=2092, 500B data

ACK592

ACK592

ACK592

ti
m

eo
ut

ACK592

ti
m

eo
ut

Whenever retransmit
data, restart the timer

Early Congestion Notification (ECN)
w ECN-capable hosts set ECT (0 or 1) bits in IP

header (ECT: ECN Capable Transport)
w When a router is getting overloaded: set the 2

ECN bits to 11
w TCP receiver: set an “ECN-Echo” (ECE) flag in the

ACK packet going to the sender
w TCP sender: cut cwnd to half

n congestion avoidance)

CS118 - Winter 2025 13

+-----+-----+
 | ECN FIELD |
 +-----+-----+
 0 1 ECT(1)
 1 0 ECT(0)
 1 1 CE

In IP header

sender can use either 01 or 10;
routers sets to 11 to indicate congestion.
These 2 bits are copied on return ACK pkt

FYI

TCP Throughput
w What’s TCP throughout as a function of

window size and RTT?
w Ignore slow start: let W = window-size when

loss occurs
n When window is W: throughput = W / RTT
n Just after loss

window à W/2, throughput à W/2RTT
n (rough estimate) Average throughout: 0.75 W/RTT

CS118 - Winter 2025 14

important

Summary
w Congestion control is a necessary tool to avoid

congestion collapse
n congestion collapse: increasing load àfurther

decreasing goodput
w Classic TCP congestion control approaches: end

host adaptation
n Don’t rely on network help, try to estimate network

state using losses
l More advanced schemes also estimate by delays, delay

changes

w Classic TCP congestion controls have two main
stages
n Slow Start to quickly ramp up sending
n Congestion Avoidance to maintain sending

CS118 - Winter 2025 15

Summary: TCP Congestion Control Actions
1. a TCP connection starts with slow start

n cwnd = 1 segment
n ssthresh assigned an initial value

2. when cwnd < ssthresh: slow-start
n when in slow-start: increase cwnd by 1 segment for

every ACK received that advances the cumulative
acknowledgment value

3. when cwnd ≧ ssthresh: congestion avoidance
n when in congestion avoidance: increase cwnd by 1

segment per RTT (or after successful delivery of a
windowful of segments)

4. After loss detected: ssthresh = cwnd/2
n if detected by 3 dup-ACKs: cwnd = cwnd/2
n if detected by retransmission timeout: cwnd = 1

segment
CS118 - Winter 2025 16

1/6
Intro & BW &

delay & socket

1/13
 HTTP & DNS

1/20
Martin Luther
King Jr. Day

1/27
TCP

2/3

1/8
 HTTP

1/15
DNS

1/22
Transport

1/29
Congestion

Control

2/5

2/10 2/17 2/24 3/3

3/10

2/12 2/19 2/26 3/5 3/12
Course
review

Schedule Rebase

CS118 - Winter 2025 17

Mon

Wed

6 7 8 9 10

Mon

Wed

3/
21

: F
in

al
 E

xa
m

• The big yellow numbers indicate the chapter numbers in the textbook.

Internet
Protocol (IP)

Midterm

Addressing,
NAT, IPv6

Routing in the
Internet

Routing
algorithms &

protocols

Routing
algorithms &

protocols
QUIC

Link layer
(Ethernet)

Security 101

Hubs and
switches

Presidents’
Day

Project 2 related, FYI

“Modern”
Transport, FYI

Midterm coverage

Is TCP congestion control fair?
Fairness: if N TCP sessions share same bottleneck link, each

should get 1/N of link capacity
Example: 2 competing connections, same RTT
w Additive increase gives slope of 1
w multiplicative decrease decreases throughput proportionally

CS118 - Winter 2025 18

capacity R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

TCP connection 1

bottleneck
router

TCP conn 2

FYI

Midterm next Wednesday
w in-person midterm

CS118 - Winter 2025 19

Summary: TCP sender congestion control

CS118 - Winter 2025 20

State Event TCP Sender Action Commentary
Slow Start
(SS)

Received
ACK for
previously
unacked data

CongWin = CongWin + MSS
If (CongWin > Threshold)
 set state to “Congestion
Avoidance”

Resulting in a doubling of
CongWin every RTT

Congestion
Avoidance
(CA)

Received
ACK for
previously
unacked data

CongWin = CongWin+MSS *
(MSS/CongWin)

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

SS or CA Loss event
detected by 3
duplicate
ACK

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Fast recovery,
implementing multiplicative
decrease. CongWin will
not drop below 1 MSS.

SS or CA Timeout Threshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

SS or CA Duplicate
ACK

Increment duplicate ACK
count for segment being
acked

CongWin and Threshold
not changed

CS118 - Winter 2025 21

A Bit of The History of TCP
w 1974: 3-way handshake
w 1978: TCP and IP split into TCP/IP
w 1983 January 1: ARPAnet switches to TCP/IP
w 1986: Internet started seeing congestion

collapses
w 1987-1988: Van Jacobson fixes TCP,

publishes a seminal paper (TCP-Tahoe)
“Congestion Avoidance and Control”
http://ccr.sigcomm.org/archive/1995/jan95/ccr-9501-jacobson.pdf

w 1990: added fast retransmit and fast recovery
(TCP-Reno)

CS118 - Winter 2025 22

http://ccr.sigcomm.org/archive/1995/jan95/ccr-9501-jacobson.pdf

FYIAnother Illustration of Fast Recovery/Retransmit
(Reno)

C
on

ge
st

io
n

w
in

do
w

Time

ssthresh

Loss detection

Network limit

Sent data,
waiting for ACK

cwnd

Buffered
data

ACKed
data

State 1

State 2
cwnd/2

cwnd/2+#dup

cwnd/2

cwnd/2+#dup

State 3

State 4

State 5

Just before the loss
detection

Just after the loss
detection

“Inflating” cwnd by the
number of dup ACKs

Additional dup ACKs lead to
additional cwnd “inflation”

After the successful
recovery (cwnd “deflation”)

Outstanding data which is not allowed to be retransmitted

Amount of new data allowed to be sent by “deflated” congestion window

SS CA

Network Share (Tahoe)

Equ
al

(fa
ir)

 sh
ar

e

N
et

w
or

k
S

ha
re

 (R
en

o)

Network Limit

Packet
losses

x0

x1

xn

xn+1

Network Share (flow1)

Equ
al

(fa
ir)

 sh
ar

e

N
et

w
or

k
S

ha
re

 (f
lo

w
2)

Network Limit

Packet
losses

x0

x1

x2

xn

xn+1

Amount of successful delivered
data inferred from dup ACKs
Amount of packets in transit

The congestion window size is a
sum of these two elements

FR

CS118 - Winter 2025 23

Congestion scenario 3

w Unneeded (superfluous) retransmissions
n multiple copies of same packets go through overloaded

links, reduce effective throughput
w When a packet is dropped, any “upstream transmission

capacity” used for that packet was wasted
CS118 - Winter 2025 24

Host A

Host B

finite shared output
link buffers

l'in : original data, plus
retransmitted data

lin : original data lout

app
trans

Congestion Control (CC)
(from textbook) Two basic approaches to CC:
End-to-end congestion control: no explicit

feedback from network
w Hosts infer congestion from observed loss or delay
Network-assisted congestion control: routers

provide feedback to end hosts
w A single bit congestion indication

FYI: there is a 3rd and better approach: let the network
regulates traffic to avoid congestion
w But an IP network cannot do it

CS118 - Winter 2025 25

TCP Fast Recovery
w cwnd: aims to limit the number of packets inside

network
w Whenever a duplicate ACK arrives à a packet is out of

network à increase cwnd by 1 segment (cwnd inflation)
w When the lost segment is ACKed: deflate cwnd to the

right size

CS118 - Winter 2025 26

AFANASYEV et al.: HOST-TO-HOST CONGESTION CONTROL FOR TCP 311

Sent data,
waiting for ACK

cwnd

Buffered
data

ACKed
data

State 1

State 2
cwnd/2

cwnd/2+#dup

cwnd/2

cwnd/2+#dup

State 3

State 4

State 5

Just before the loss
detection

Just after the loss
detection

“Inflating” cwnd by the
number of dup ACKs

Additional dup ACKs lead to
additional cwnd “inflation”

After the successful
recovery (cwnd “deflation”)

Outstanding data which is not allowed to be retransmitted

Amount of new data allowed to be sent by “deflated” congestion window

Amount of successful delivered
data inferred from dup ACKs
Amount of packets in transit

The congestion window size is a
sum of these two elements

Fig. 14. Characteristic states of TCP Reno’s Fast Recovery

C
on

ge
st

io
n

w
in

do
w

Time

ssthresh

Loss detection

Network limit

SS CAFR

Fig. 15. Congestion window dynamics of TCP Reno
(SS: the Slow Start phase, CA: the Congestion Avoidance phase,
FR: the Fast Recovery phase)

maintain a constant number of packets in transit, we have
to inflate our congestion window to open a slot for sending
new data (State 4 in Figure 14). Without this increase, new
packets cannot be sent before the error is recovered, and the
amount of packets in transit can decrease more than expected.
In the final stage (State 5), when a non-duplicate ACK

is received, we want to resume Congestion Avoidance with
half of the original congestion window. With high proba-
bility, the non-duplicate ACK will acknowledge delivery of
all data packets previously inferred by the duplicate ACKs
previously received. At this point, congestion window deflation
to cwnd/2 (to the value just after entering recovery, State 2
in Figure 14) is a simple and reliable way to ensure the target
exit state from Fast Recovery.
The resulting theoretical congestion window dynamics in

TCP Reno are presented in Figure 15. Compared to the
dynamics of TCP Tahoe (Figure 9), the overall effectiveness
in the steady state is considerably improved by replacing Slow
Start phases after each loss detection by typically shorter Fast
Retransmit phases.
In fact, recovering from a single loss would usually occur

within one RTT. However, efficiency is improved not only
by shortening the recovery period, but also by allowing data
transfers during the recovery. Having substantial performance

Network Share (Tahoe)

Equ
al

(fa
ir)

sh
are

N
et

w
or

k
S

ha
re

 (R
en

o)

Network Limit

Packet
losses

x0

x1

xn

xn+1

Fig. 16. Convergence diagram when Reno flow is competing with Tahoe
flow
x0−x1, . . . , xn −xn+1 additive increase (both flows have the same
increase rate of their congestion windows)
x1−x2, . . . , xn−1−xn Tahoe flow reset its congestion window but
Reno flow only halves it

improvement compared to Tahoe, TCP Reno remains fair to
other TCP Reno flows (in terms defined in Section II-A). If
we try to build a convergence diagram, it would match the
diagram for the Congestion Avoidance algorithm in Figure 11
exactly. However, a slightly worse situation can be observed
when a TCP Reno flow competes with a Tahoe flow. Un-
equal reactions to packet loss detection lead to shifting the
distribution of network resources to the Reno side. This can
be demonstrated using the convergence diagram in Figure 16.
With a finite number of steps, the system reaches a steady
state in which the Reno flow has a larger share of network
resources. To quantify fairness in this case, one can easily
calculate the Jain’s fairness index (see Section II-A). In
Figure 16, this value equals 0.9 (after the convergence—state
xn+1—network shares are distributed as 2:1 in favor of a
Reno flow). This can be considered an acceptable level for
the transition period when the congestion control algorithm is
changed from Tahoe to Reno at all network hosts.
A comparison to TCP DUAL shows that, in an ideal

network environment with only one TCP flow present, the

FYI

FYIcwnd = limit on # of packets inside network

CS118 - Winter 2025

Fast	Retransmit	/	Fast	Recovery	
A	 B	

send	2,	3,	4,	5,	6,	7,	8,	9	
(cwnd=8)	 ACK	1	

...	
ACK	1	

window	is	8	

3	dup	ACKs	
(cwnd=4(target)+3(inflate)=7)	

inflated	amount,	packets	that	leM	the	network	

retransmit	2	

ObjecQve:	cut	
window	by	half,	
but	avoiding	
draining	the	pipe	
(keep	~half	of	
window	in	flight)	

ACK	9	
ACK	10,	11,	12	

when	dup	ACK	comes,	
-	cwnd	+=	1	(8),	cannot	send	anything	yet	
-	cwnd	+=	1	(9),	can	send	a	new	packet	(pkt	10)	
-	cwnd	+=	1	(10),	can	send	a	new	packet	(pkt	11)	
-	cwnd	+=	1	(11),	can	send	a	new	packet	(pkt	12)	
	

new	ACK,		
cwnd=4	(target)	

Packet 1 was sent and ACKed earlier

P2
P3
P4
P5
P6
P7
P8
P9

A1
A1
A1

3 dup-ACKs:
cwnd=cwnd/2
Resend P2

CS118 - Winter 2025 28

10 11987654321 12

un ACK’ed cwnd = 4

3 dup-ACKs inform us that 3 packets have been out of network
Inflate cwnd by 3 pktsà cwnd = 4+3 = 7 (still nothing new can go yet)

The current situation:

cwnd = 4, should allow 4 packets in the network
But we cannot slide the window to the right to allow more transmission

Not sent out yet

Why?

Receive next dup-ACK (triggered by P6): cwnd =8: still can’t send new packet
Receive next 3 dup-ACKs (triggered by P7-9): cwnd=11, sends P10-12

cwnd=11
cwnd=7

How to fix it

FYIcwnd = limit on # of packets inside network

Fast	Retransmit	/	Fast	Recovery	
A	 B	

send	2,	3,	4,	5,	6,	7,	8,	9	
(cwnd=8)	 ACK	1	

...	
ACK	1	

window	is	8	

3	dup	ACKs	
(cwnd=4(target)+3(inflate)=7)	

inflated	amount,	packets	that	leM	the	network	

retransmit	2	

ObjecQve:	cut	
window	by	half,	
but	avoiding	
draining	the	pipe	
(keep	~half	of	
window	in	flight)	

ACK	9	
ACK	10,	11,	12	

when	dup	ACK	comes,	
-	cwnd	+=	1	(8),	cannot	send	anything	yet	
-	cwnd	+=	1	(9),	can	send	a	new	packet	(pkt	10)	
-	cwnd	+=	1	(10),	can	send	a	new	packet	(pkt	11)	
-	cwnd	+=	1	(11),	can	send	a	new	packet	(pkt	12)	
	

new	ACK,		
cwnd=4	(target)	

Packet 1 was sent and ACKed earlier

P2
P3
P4
P5
P6
P7
P8
P9

A1
A1
A1

3 dup-ACKs:
cwnd=cwnd/2
Resend P2

P10
P11
P12

triggered by P6-9

CS118 - Winter 2025

CS118 - Winter 2025 30

Fast	Retransmit	/	Fast	Recovery	
A	 B	

send	2,	3,	4,	5,	6,	7,	8,	9	
(cwnd=8)	 ACK	1	

...	
ACK	1	

window	is	8	

3	dup	ACKs	
(cwnd=4(target)+3(inflate)=7)	

inflated	amount,	packets	that	leM	the	network	

retransmit	2	

ObjecQve:	cut	
window	by	half,	
but	avoiding	
draining	the	pipe	
(keep	~half	of	
window	in	flight)	

ACK	9	
ACK	10,	11,	12	

when	dup	ACK	comes,	
-	cwnd	+=	1	(8),	cannot	send	anything	yet	
-	cwnd	+=	1	(9),	can	send	a	new	packet	(pkt	10)	
-	cwnd	+=	1	(10),	can	send	a	new	packet	(pkt	11)	
-	cwnd	+=	1	(11),	can	send	a	new	packet	(pkt	12)	
	

new	ACK,		
cwnd=4	(target)	

When the loss
recovered, deflate
cwnd to the correct
value

FYI

FYINeed better than loss-based congestion
detection

w network traffic can be in one of 3 states
n Under-Utilized: traffic load < link capacity, no queue
n Over-Utilized: traffic load > link capacity, queues

form
n Saturated: queues full, packet loss occurs

w Loss-based control systems probe upward to
the Saturated point, then try to back off quickly
to assumed Under-Utilized state, to the let the
queues drain

w Optimal traffic control: at the point of state
change from Under to Over-utilized, not to
reach the Saturated point

CS118 - Winter 2025 31

